Abadie's Constraint Qualification, Hoffman's Error Bounds, and Hausdorff Strong Unicity
نویسندگان
چکیده
منابع مشابه
Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification
A global error bound is given on the distance between an arbitrary point in the n-dimensional real space R n and its projection on a nonempty convex set determined by m convex, possibly nondiierentiable, inequalities. The bound is in terms of a natural residual that measures the violations of the inequalities multiplied by a new simple condition constant that embodies a single strong Slater con...
متن کاملEffective bounds on strong unicity in L1-approximation
In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [18]) to analyze Cheney’s simplification [6] of Jackson’s original proof [10] from 1921 of the uniqueness o...
متن کاملStability of error bounds for convex constraint
5 This paper studies stability of error bounds for convex constraint systems 6 in Banach spaces. We show that certain known sufficient conditions for local 7 and global error bounds actually ensure error bounds for the family of func8 tions being in a sense small perturbations of the given one. A single inequality 9 as well as semi-infinite constraint systems are considered. 10 Mathematics Subj...
متن کاملConstraint qualification failure in action
This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables. In this framework, classical modeling techniques, including big-M approaches, are not applicable. We introduce a lifted second-order cone formulation of such on/off constraints and discuss related constraint qualification issues. A solution is proposed to avoid solvers’ failure.
متن کاملConstraint Qualification, the Strong CHIP, and Best Approximation with Convex Constraints in Banach Spaces
Several fundamental concepts such as the basic constraint qualification (BCQ), the strong conical hull intersection property (CHIP), and the perturbations for convex systems of inequalities in Banach spaces (over R or C) are extended and studied; here the systems are not necessarily finite. Their relationships with each other in connection with the best approximations are investigated. As appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1999
ISSN: 0021-9045
DOI: 10.1006/jath.1997.3243